The addition of various elements be circumnavigation of a circle the circumference the diameter of the area the ability of that circle to travel up on a tangent upon a draw online in algebra upon a graphic line provided on a graph threedimensional for the circle to have characteristics of plots on the line for the circle to travel a distance from one area to another in a rhombus for a circle to travel within an area of making a circular route around all the axis of Cartesian mapping for a circle to create within itself interdimensional passages through string theory for a circle to act as a geometrical figure representing all others to create The correct scenario for calculations and statistics to be applied to it spherical details positioning and its ability to conceive it’s movements as well as its power capacity it’s in a characteristics and it’s generation of energy due to details of movement of ability of passiveness end of creationism projections The ability to research plot and conceptualize in diagrams the ability to change position to conceive to prioritize to create situations where the object or the ability to perceive objects in that dimension are actualized at the capabilities of modernday technology to adapt to various instances where spheres balls circles and geometrical implementation of arcs joined together create the quick scenario for implementations of fractal geometry of substantial amounts of algebra as well as surface area and perimeter given the correct scenario for mathematical implementation of log side of cool side as well as powers of Ted implementation of stacking of projection a holographic implementation of the ability of the Mathematical configuration to become alive in animation

Recent Posts
Archives
 October 2017
 September 2017
 August 2017
 June 2017
 May 2017
 April 2017
 February 2017
 January 2017
 November 2016
 September 2016
 August 2016
 May 2016
 April 2016
 March 2016
 February 2016
 January 2016
 December 2015
 November 2015
 October 2015
 September 2015
 August 2015
 July 2015
 June 2015
 May 2015
 April 2015
 March 2015
 February 2015
 January 2015
 December 2014
 November 2014
 October 2014
 September 2014
 August 2014
 July 2014
 June 2014
 May 2014
 April 2014
 March 2014
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 July 2013
 June 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
 September 2011
 August 2011
 July 2011
 June 2011
 May 2011
 April 2011
 March 2011
 February 2011
 January 2011
 December 2010
 November 2010
 October 2010
 August 2010
 June 2010
 May 2010
 April 2010
 March 2010
 February 2010
 December 2009
 November 2009
 October 2009
 September 2009
 August 2009
 July 2009
 June 2009
 May 2009
 April 2009
 March 2009
 February 2009
 January 2009
 October 2008
 August 2008
 July 2008
 June 2008
Categories
Meta
I tend not to leave a response, but I browsed some comments here Math  gary’s space.
I do have a couple of questions for you if you do not mind.
Is it just me or do a few of these comments appear like they are
left by brain dead folks? ðŸ˜› And, if you are posting on additional online sites, I
would like to keep up with anything new you have to post. Would you post a list of every one of all your shared sites like your twitter feed, Facebook page or linkedin profile?
Gary skeete.WordPress.com 10 sites gary skeete Google three sites gary skeete Facebook pages Berkeley legal and Ashworth medicine Ashworth medicine.blogspot.com Ashworth medicine at Lab roots Gary Skeete.webs.com Gary skeete at LinkedIn gary skeete at scribd gary skeete YouTube garyskeete educreations garyskeete academia simplesite
In quantum physics the same as it applied mathematics the juxtaposition of a qubit could be analyzed and pronounced just as the whereabouts of a person living or dead can be justified by looking at Schrodinger’s cat as applied to be wave theory am in quantum mechanics the wave theory am as in the Fourier series in mathematics where heat distribution can be found in the analysis and location of a person on a heat map distributed by satellite mapping can concur to find the location of the person with respect to satellite cameras with respect to satellite tracking with respect to heat distribution in different areas wavelike transformation of leave for your series can track from groundlevel the distinct possibilities of location with respect to heat transfer of the person through Fourier Analysis
Fourier analysis
Watch this page
Fourier transforms
Continuous Fourier transform
Fourier series
Discretetime Fourier transform
Discrete Fourier transform
Fourier analysis
Related transforms
In mathematics, Fourier analysis (English pronunciation: /ËˆfÉ”É™rieÉª/) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.
Today, the subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into simpler pieces is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. In mathematics, the term Fourier analysis often refers to the study of both operations.
The decomposition process itself is called a Fourier transform. The transform is often given a more specific name, which depends upon the domain and other properties of the function being transformed. Moreover, the original concept of Fourier analysis has been extended over time to apply to more and more abstract and general situations, and the general field is often known as harmonic analysis. Each transform used for analysis (see list of Fourierrelated transforms) has a corresponding inverse transform that can be used for synthesis.
Contents
Applications
Applications in signal processing
Variants of Fourier analysis
(Continuous) Fourier transform
Fourier series
Discretetime Fourier transform (DTFT)
Discrete Fourier transform (DFT)
Summary
Fourier transforms on arbitrary locally compact abelian topological groups
Timeâ€“frequency transforms
History
Interpretation in terms of time and frequency
Notes
See also
Citations
References
External links
ApplicationsEdit
Fourier analysis has many scientific applications â€“ in physics, partial differential equations, number theory, combinatorics, signal processing, imaging, probability theory, statistics, option pricing, cryptography, numerical analysis, acoustics, oceanography, sonar, optics, diffraction, geometry, protein structure analysis and other areas.
This wide applicability stems from many useful properties of the transforms:
The transforms are linear operators and, with proper normalization, are unitary as well (a property known as Parseval’s theorem or, more generally, as the Plancherel theorem, and most generally via Pontryagin duality) (Rudin 1990).
The transforms are usually invertible.
The exponential functions are eigenfunctions of differentiation, which means that this representation transforms linear differential equations with constant coefficients into ordinary algebraic ones (Evans 1998). Therefore, the behavior of a linear timeinvariant system can be analyzed at each frequency independently.
By the convolution theorem, Fourier transforms turn the complicated convolution operation into simple multiplication, which means that they provide an efficient way to compute convolutionbased operations such as polynomial multiplication and multiplying large numbers (Knuth 1997).
The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using Fast Fourier Transform (FFT) algorithms. (Conte & de Boor 1980)
Fourier transformation is also useful as a compact representation of a signal. For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision, and weak components are eliminated entirely, so that the remaining components can be stored very compactly. In image reconstruction, each image square is reassembled from the preserved approximate Fouriertransformed components, which are then inversetransformed to produce an approximation of the original image.
Applications in signal processing
When processing signals, such as audio, radio waves, light waves, seismic waves, and even images, Fourier analysis can isolate individual components of a compound waveform, concentrating them for easier detection and/or removal. A large family of signal processing techniques consist of Fouriertransforming a signal, manipulating the Fouriertransformed data in a simple way, and reversing the transformation.
Some examples include:
Equalization of audio recordings with a series of bandpass filters;
Digital radio reception with no superheterodyne circuit, as in a modern cell phone or radio scanner;
Image processing to remove periodic or anisotropic artifacts such as jaggies from interlaced video, stripe artifacts from strip aerial photography, or wave patterns from radio frequency interference in a digital camera;
Cross correlation of similar images for coalignment;
Xray crystallography to reconstruct a crystal structure from its diffraction pattern;
Fourier transform ion cyclotron resonance mass spectrometry to determine the mass of ions from the frequency of cyclotron motion in a magnetic field.
Many other forms of spectroscopy also rely upon Fourier Transforms to determine the threedimensional structure and/or identity of the sample being analyzed, including Infrared and Nuclear Magnetic Resonance spectroscopies.
Generation of sound spectrograms used to analyze sounds.
Passive sonar used to classify targets based on machinery noise.
Variants of Fourier analysisEdit
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying timedomain function. The relative computational ease of the DFT sequence and the insight it gives into S(f) make it a popular analysis tool.
(Continuous) Fourier transform
Most often, the unqualified term Fourier transform refers to the transform of functions of a continuous real argument, and it produces a continuous function of frequency, known as a frequency distribution. One function is transformed into another, and the operation is reversible. When the domain of the input (initial) function is time (t), and the domain of the output (final) function is ordinary frequency, the transform of function s(t) at frequency Æ’ is given by the complex number:
Evaluating this quantity for all values of Æ’ produces the frequencydomain function. Then s(t) can be represented as a recombination of complex exponentials of all possible frequencies:
which is the inverse transform formula. The complex number, S(Æ’), conveys both amplitude and phase of frequency Æ’.
See Fourier transform for much more information, including:
conventions for amplitude normalization and frequency scaling/units
transform properties
tabulated transforms of specific functions
an extension/generalization for functions of multiple dimensions, such as images.
Fourier series
The Fourier transform of a periodic function, sP(t), with period P, becomes a Dirac comb function, modulated by a sequence of complex coefficients:
for all integer values of k,
and where is the integral over any interval of length P.
The inverse transform, known as Fourier series, is a representation of sP(t) in terms of a summation of a potentially infinite number of harmonically related sinusoids or complex exponential functions, each with an amplitude and phase specified by one of the coefficients:
When sP(t), is expressed as a periodic summation of another function, s(t):
the coefficients are proportional to samples of S(Æ’) at discrete intervals of 1/P: [note 1]
A sufficient condition for recovering s(t) (and therefore S(Æ’)) from just these samples is that the nonzero portion of s(t) be confined to a known interval of duration P, which is the frequency domain dual of the Nyquistâ€“Shannon sampling theorem.
See Fourier series for more information, including the historical development.
Discretetime Fourier transform (DTFT)
The DTFT is the mathematical dual of the timedomain Fourier series. Thus, a convergent periodic summation in the frequency domain can be represented by a Fourier series, whose coefficients are samples of a related continuous time function:
which is known as the DTFT. Thus the DTFT of the s[n] sequence is also the Fourier transform of the modulated Dirac comb function.[note 2]
The Fourier series coefficients (and inverse transform), are defined by:
Parameter T corresponds to the sampling interval, and this Fourier series can now be recognized as a form of the Poisson summation formula. Thus we have the important result that when a discrete data sequence, s[n], is proportional to samples of an underlying continuous function, s(t), one can observe a periodic summation of the continuous Fourier transform, S(Æ’). That is a cornerstone in the foundation of digital signal processing. Furthermore, under certain idealized conditions one can theoretically recover S(Æ’) and s(t) exactly. A sufficient condition for perfect recovery is that the nonzero portion of S(Æ’) be confined to a known frequency interval of width 1/T. When that interval is [0.5/T, 0.5/T], the applicable reconstruction formula is the Whittakerâ€“Shannon interpolation formula.
Another reason to be interested in S1/T(Æ’) is that it often provides insight into the amount of aliasing caused by the sampling process.
Applications of the DTFT are not limited to sampled functions. See Discretetime Fourier transform for more information on this and other topics, including:
normalized frequency units
windowing (finitelength sequences)
transform properties
tabulated transforms of specific functions
Discrete Fourier transform (DFT)
The DTFT of a periodic sequence, sN[n], with period N, becomes another Dirac comb function, modulated by the coefficients of a Fourier series. And the integral formula for the coefficients simplifies to a summation (see DTFT/Periodic data):
, where is the sum over any nsequence of length N.
The Sk sequence is what’s customarily known as the DFT of sN. It is also Nperiodic, so it is never necessary to compute more than N coefficients. In terms of Sk, the inverse transform is given by:
where is the sum over any ksequence of length N.
When sN[n] is expressed as a periodic summation of another function: and
the coefficients are equivalent to samples of S1/T(Æ’) at discrete intervals of 1/P = 1/NT: (see DTFT/Sampling the DTFT)
Conversely, when one wants to compute an arbitrary number (N) of discrete samples of one cycle of a continuous DTFT, it can be done by computing the relatively simple DFT of sN[n], as defined above. In most cases, N is chosen equal to the length of nonzero portion of s[n]. Increasing N, known as zeropadding or interpolation, results in more closely spaced samples of one cycle of S1/T(Æ’). Decreasing N, causes overlap (adding) in the timedomain (analogous to aliasing), which corresponds to decimation in the frequency domain. (see Sampling the DTFT) In most cases of practical interest, the s[n] sequence represents a longer sequence that was truncated by the application of a finitelength window function or FIR filter array.
The DFT can be computed using a fast Fourier transform (FFT) algorithm, which makes it a practical and important transformation on computers.
See Discrete Fourier transform for much more information, including:
transform properties
applications
tabulated transforms of specific functions
Summary
For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via Dirac delta and Dirac comb functions. But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finiteduration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact. We also note that none of the formulas here require the duration of to be limited to the period, P or N. But that is a common situation, in practice.
transforms (continuoustime)
Continuous frequency Discrete frequencies
Transform
Inverse
In the table below, associating the scale factor with function results in some notational simplification without loss of generality.
transforms (discretetime)
Continuous frequency Discrete frequencies
Transform
Inverse
Fourier transforms on arbitrary locally compact abelian topological groups
The Fourier variants can also be generalized to Fourier transforms on arbitrary locally compact abelian topological groups, which are studied in harmonic analysis; there, the Fourier transform takes functions on a group to functions on the dual group. This treatment also allows a general formulation of the convolution theorem, which relates Fourier transforms and convolutions. See also the Pontryagin duality for the generalized underpinnings of the Fourier transform.
Timeâ€“frequency transforms
In signal processing terms, a function (of time) is a representation of a signal with perfect time resolution, but no frequency information, while the Fourier transform has perfect frequency resolution, but no time information.
As alternatives to the Fourier transform, in timeâ€“frequency analysis, one uses timeâ€“frequency transforms to represent signals in a form that has some time information and some frequency information â€“ by the uncertainty principle, there is a tradeoff between these. These can be generalizations of the Fourier transform, such as the shorttime Fourier transform, the Gabor transform or fractional Fourier transform (FRFT), or can use different functions to represent signals, as in wavelet transforms and chirplet transforms, with the wavelet analog of the (continuous) Fourier transform being the continuous wavelet transform.
HistoryEdit
A primitive form of harmonic series dates back to ancient Babylonian mathematics, where they were used to compute ephemerides (tables of astronomical positions).[1] The classical Greek concepts of deferent and epicycle in the Ptolemaic system of astronomy were related to Fourier series (see Deferent and epicycle: Mathematical formalism).
In modern times, variants of the discrete Fourier transform were used by Alexis Clairaut in 1754 to compute an orbit,[2] which has been described as the first formula for the DFT,[3] and in 1759 by Joseph Louis Lagrange, in computing the coefficients of a trigonometric series for a vibrating string.[4] Technically, Clairaut’s work was a cosineonly series (a form of discrete cosine transform), while Lagrange’s work was a sineonly series (a form of discrete sine transform); a true cosine+sine DFT was used by Gauss in 1805 for trigonometric interpolation of asteroid orbits.[5] Euler and Lagrange both discretized the vibrating string problem, using what would today be called samples.[4]
An early modern development toward Fourier analysis was the 1770 paper RÃ©flexions sur la rÃ©solution algÃ©brique des Ã©quations by Lagrange, which in the method of Lagrange resolvents used a complex Fourier decomposition to study the solution of a cubic:[6] Lagrange transformed the roots into the resolvents:
where Î¶ is a cubic root of unity, which is the DFT of order 3.
A number of authors, notably Jean le Rond d’Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation,[citation needed] but the breakthrough development was the 1807 paper MÃ©moire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series, introducing the Fourier series.
Historians are divided as to how much to credit Lagrange and others for the development of Fourier theory: Daniel Bernoulli and Leonhard Euler had introduced trigonometric representations of functions,[3] and Lagrange had given the Fourier series solution to the wave equation,[3] so Fourier’s contribution was mainly the bold claim that an arbitrary function could be represented by a Fourier series.[3]
The subsequent development of the field is known as harmonic analysis, and is also an early instance of representation theory.
The first fast Fourier transform (FFT) algorithm for the DFT was discovered around 1805 by Carl Friedrich Gauss when interpolating measurements of the orbit of the asteroids Juno and Pallas, although that particular FFT algorithm is more often attributed to its modern rediscoverers Cooley and Tukey.[5][7]
Interpretation in terms of time and frequencyEdit
In signal processing, the Fourier transform often takes a time series or a function of continuous time, and maps it into a frequency spectrum. That is, it takes a function from the time domain into the frequency domain; it is a decomposition of a function into sinusoids of different frequencies; in the case of a Fourier series or discrete Fourier transform, the sinusoids are harmonics of the fundamental frequency of the function being analyzed.
When the function Æ’ is a function of time and represents a physical signal, the transform has a standard interpretation as the frequency spectrum of the signal. The magnitude of the resulting complexvalued function F at frequency Ï‰ represents the amplitude of a frequency component whose initial phase is given by the phase of F.
Fourier transforms are not limited to functions of time, and temporal frequencies. They can equally be applied to analyze spatial frequencies, and indeed for nearly any function domain. This justifies their use in such diverse branches as image processing, heat conduction, and automatic control.
NotesEdit
We may also note that:
Consequently, a common practice is to model “sampling” as a multiplication by the Dirac comb function, which of course is only “possible” in a purely mathematical sense.
See alsoEdit
Generalized Fourier series
FourierBessel series
Fourierrelated transforms
Laplace transform (LT)
Twosided Laplace transform
Mellin transform
Nonuniform discrete Fourier transform (NDFT)
Quantum Fourier transform (QFT)
Numbertheoretic transform
Leastsquares spectral analysis
Basis vectors
Bispectrum
Characteristic function (probability theory)
Orthogonal functions
Schwartz space
Spectral density
Spectral density estimation
Spectral music
Wavelet
CitationsEdit
Prestini, Elena (2004), The evolution of applied harmonic analysis: models of the real world, BirkhÃ¤user, ISBN 9780817641252, p. 62
Rota, GianCarlo; Palombi, Fabrizio (1997), Indiscrete thoughts, BirkhÃ¤user, ISBN 9780817638665, p. 11
Neugebauer, Otto (1969) [1957], The Exact Sciences in Antiquity (2 ed.), Dover Publications, ISBN 9780486223322
BrackBernsen, Lis; Brack, Matthias, Analyzing shell structure from Babylonian and modern times, arXiv:physics/0310126
Terras, Audrey (1999), Fourier analysis on finite groups and applications, Cambridge University Press, ISBN 9780521457187, p. 30
Briggs, William L.; Henson, Van Emden (1995), The DFT : an owner’s manual for the discrete Fourier transform, SIAM, ISBN 9780898713428, p. 4
Briggs, William L.; Henson, Van Emden (1995), The DFT: an owner’s manual for the discrete Fourier transform, SIAM, ISBN 9780898713428, p. 2
Heideman, M. T., D. H. Johnson, and C. S. Burrus, “Gauss and the history of the fast Fourier transform,” IEEE ASSP Magazine, 1, (4), 14â€“21 (1984)
Knapp, Anthony W. (2006), Basic algebra, Springer, ISBN 9780817632489, p. 501
Terras, Audrey (1999), Fourier analysis on finite groups and applications, Cambridge University Press, ISBN 9780521457187, p. 31
ReferencesEdit
Conte, S. D.; de Boor, Carl (1980), Elementary Numerical Analysis (Third ed.), New York: McGraw Hill, Inc., ISBN 0070662282
Evans, L. (1998), Partial Differential Equations, American Mathematical Society, ISBN 3540761241
Howell, Kenneth B. (2001). Principles of Fourier Analysis, CRC Press. ISBN 9780849382758
Kamen, E.W., and B.S. Heck. “Fundamentals of Signals and Systems Using the Web and Matlab”. ISBN 0130172936
Knuth, Donald E. (1997), The Art of Computer Programming Volume 2: Seminumerical Algorithms (3rd ed.), Section 4.3.3.C: Discrete Fourier transforms, pg.305: AddisonWesley Professional, ISBN 0201896842
Polyanin, A.D., and A.V. Manzhirov (1998). Handbook of Integral Equations, CRC Press, Boca Raton. ISBN 0849328764
Rudin, Walter (1990), Fourier Analysis on Groups, WileyInterscience, ISBN 047152364X
Smith, Steven W. (1999), The Scientist and Engineer’s Guide to Digital Signal Processing (Second ed.), San Diego, Calif.: California Technical Publishing, ISBN 0966017633
Stein, E.M., and G. Weiss (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press. ISBN 069108078X
External linksEdit
Tables of Integral Transforms at EqWorld: The World of Mathematical Equations.
An Intuitive Explanation of Fourier Theory by Steven Lehar.
Lectures on Image Processing: A collection of 18 lectures in pdf format from Vanderbilt University. Lecture 6 is on the 1 and 2D Fourier Transform. Lectures 7â€“15 make use of it., by Alan Peters
Moriarty, Philip; Bowley, Roger (2009). “âˆ‘ Summation (and Fourier Analysis)”. Sixty Symbols. Brady Haran for the University of Nottingham.
Read in another language
http://jaem.isikun.edu.tr/web/current/88vol4no2/177ontrigonometricapproximationinthespacelpx