U of T lipids


U of T Libraries U of T Home Portal ROSI Campus Maps
University of TorontoTSpace
Browse
Help
Search
About
First time users
Login
TSpace Repository School of Graduate Studies – Theses Doctoral
Title:
Intracellular Signaling Pathways Regulating Hepatic Apolipoprotein B100 Production: Roles of Mitogen-activated Protein Kinases (MAPKs) and Inhibitor of NFkappaB Kinase (IKK)-NFkappaB
Author:
Julie Tsai
Advisor:
Khosrow Adeli
Department:
Laboratory Medicine and Pathobiology
Keywords:
metabolism; lipids; signalling; lipoproteins; insulin resistance; inflammation
Issue Date:
3-Mar-2010
Abstract (summary):
Apolipoprotein B100 (apoB), the structural protein component of triglyceride-rich very low density lipoprotein (VLDL) and atherogenic low density lipoprotein, is considered an important risk indicator of atherosclerosis. In insulin resistant states, hepatic overproduction of apoB leads to metabolic dyslipidemia, characterized by high circulating VLDL and hypertriglyceridemia. Since the mitogen-activated protein kinases (MAPKs) and the inhibitor of NFkappaB kinase (IKK)-NFkappaB cascades are perturbed in insulin resistance, we hypothesized that the MAPKs (ERK, p38 and JNK) and the IKK-NFkappaB pathways regulate hepatic apoB output. We modulated these pathways in HepG2, a human hepatoma cell line, and primary hamster hepatocytes using chemical inhibitors and protein overexpression. ApoB synthesis and secretion were examined by metabolic pulse labeling. HepG2 is typically defective in secreting apoB as large VLDL particles and secretes smaller triglyceride-poor apoB-particles. Under continuous pulse labeling, ERK inhibition not only increased apoB secretion, it enabled HepG2 to secrete VLDL-sized particles in the presence of exogenous fatty acid (oleate). Concomitant with the increased apoB-particle size, ERK inhibition raised intracellular triglyceride level and diacylglycerol acyltransferase (DGAT) 1 and DGAT2 mRNA levels. Conversely, ERK activation decreased VLDL-apoB secretion from primary hepatocytes. In contrast to ERK, p38 or JNK inhibition decreased apoB secretion without affecting apoB-particle size from oleate-treated HepG2 cells. JNK inhibition also modulated apoB levels in primary hamster hepatocytes. Interestingly, the development of diet-induced hepatic insulin resistance was associated with decreased ERK, and enhanced p38 and NFkappaB activities. Thus we investigated the role of the NFkappaB pathway in regulating hepatic apoB production. IKK inhibition decreased and IKK overexpression increased apoB levels by modulating apoB mRNA translation and protein stability. IKK inhibition also suppressed hepatic apoB overproduction in an insulin resistance model, the fructose-fed hamster. Altogether, our results suggest that among the MAPK cascades, the MEK-ERK pathway is crucial in regulating apoB-lipoprotein assembly, possibly by modulating lipid availability to newly-synthesized apoB. The inflammatory IKK-NFkappaB cascade is also involved in regulating apoB synthesis and secretion. We postulate that dysregulation in the MAPK or NFkappaB cascades in insulin resistant and inflammatory states may contribute to hepatic apoB overproduction, and the common phenotype of hypertriglyceridemia and dyslipidemia.
URI:
http://hdl.handle.net/1807/19239
Files

Download thesis (PDF)
Permanent link

http://hdl.handle.net/1807/19239
Show complete metadata
Show Statistics
Items in TSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Advertisements

About garyskeete

ASHWORTH MEDICINE-Professional Medical Assisting, Doctor of Science,Legal Assistant Diploma BSc Criminal Justice
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s