IHOP liver disease

with high efficiency for mitogen-activated protein kinase extracellular signal-regulated kinase.
Fernandes N1, Bailey DE, Vanvranken DL, Allbritton NL.
Author information
The mitogen-activated protein kinase extracellular regulated kinase (ERK) plays a key role in the regulation of cellular proliferation. Mutations in the ERK cascade occur in 30% of malignant tumors. Thus understanding how the kinase identifies its cognate substrates as well as monitoring the activity of ERK is central to cancer research and therapeutic development. ERK binds to its protein targets, both downstream substrates and upstream activators, via a binding site distinct from the catalytic site of ERK. The substrate sequences that bind, or dock, to these sites on ERK influence the efficiency of phosphorylation. For this reason, simple peptide substrates containing only phosphorylation sequences typically possess low efficiencies for ERK. Appending short docking peptides derived from full-length protein substrates and activators of ERK to a phosphorylation sequence increased the affinity of ERK for the phosphorylation sequence by as much as 200-fold while only slightly diminishing the maximal velocity of the reaction. The efficiency of the phosphorylation reaction was increased by up to 150-fold, while the specificity of the substrate for ERK was preserved. Simple modular peptide substrates, which can be easily tailored to possess high phosphorylation efficiencies, will enhance our understanding of the regulation of ERK and provide a tool for the development of new kinase assays.
PMID: 17918909 [PubMed – indexed for MEDLINE] PMCID: PMC2597387 Free PMC Article
Share on FacebookShare on TwitterShare on Google+




About garyskeete

ASHWORTH MEDICINE-Professional Medical Assisting, Doctor of Science,Legal Assistant Diploma BSc Criminal Justice PhD Computational Neuroscience MD DSC Epigenetics
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s