IHOP Endocrinology

Discovery of an MIT-like atracotoxin family: spider venom peptides that share sequence homology but not pharmacological properties with AVIT family proteins.
Wen S, Wilson DT, Kuruppu S, Korsinczky ML, Hedrick J, Pang L, Szeto T, Hodgson WC, Alewood PF, Nicholson GM
Neurotoxin Research Group, Department of Health Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N– and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significantamino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins includingmamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 [?] (PK1 [?]) and prokineticin 2 [?] (PK2 [?]). These AVIT family proteins target prokineticin [?] receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MIT1, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pig ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1muM, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin [?] receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin [?] receptors.

Peptides (2005)

PMID: 15979762

About garyskeete

ASHWORTH MEDICINE-Professional Medical Assisting, Doctor of Science,Legal Assistant Diploma BSc Criminal Justice PhD Computational Neuroscience MD DSC Epigenetics
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s