U of T Infectious Disease


Login
TSpace Repository School of Graduate Studies – Theses Doctoral
Title:
Host Inflammatory Pathways in Malaria Infection: Potential Therapeutic Targets and Biomarkers of Disease Severity
Author:
Erdman, Laura Kelly
Advisor:
Kain, Kevin C.
Department:
Medical Science
Keywords:
Malaria; Innate immunity; Inflammation; Phagocytosis; Infectious disease; Biomarkers
Issue Date:
6-Jan-2012
Abstract (summary):
Severe malaria infections cause almost 1 million deaths annually, mostly among non-immune African children. The pathogenesis of severe malaria is poorly understood. It is increasingly appreciated that while host innate immune responses such as inflammation and phagocytosis are critical for control of parasite replication, they can become dysregulated and contribute to severe disease. The goals of this work were: (1) to characterize inflammatory responses to malaria by defining their relationship to phagocytosis and identifying novel molecular mediators, and (2) to evaluate the utility of biomarkers of inflammation and other host responses for predicting outcome in severe malaria infection. Using an in vitro model of the malaria-macrophage interaction, inflammatory and phagocytic responses to Plasmodium falciparum were found to be partially coupled. Activation of Toll-like receptors (TLRs) by purified parasite components increased internalization of parasitized erythrocytes, but uptake of parasitized erythrocytes did not require TLRs, nor did it trigger cytokine production via TLRs or other receptors. Two candidate molecules – Triggering receptor expressed on myeloid cells-1 (TREM-1) and Chitinase-3 like-1 (CHI3L1) – did not appear to critically modulate inflammation to malaria in vitro or in murine models. However, exogenous TREM-1 activation enhanced the pro- inflammatory nature of the response to P. falciparum, with potential implications for malarial-bacterial co-infection. CHI3L1-deficient mice showed a trend towards earlier death in experimental cerebral malaria, suggesting that CHI3L1 may protect against severe malaria; however, further investigation in more informative models is required. Admission levels of plasma TREM-1, CHI3L1, and other biomarkers of inflammation and endothelial activation were increased in Ugandan children with severe malaria. Simple combinations of these biomarkers predicted mortality among severe malaria patients with high accuracy, warranting larger validation studies. Taken together, these findings identify host responses as putative targets for adjunctive therapies, and suggest the utility of host biomarker combinations as prognostic tests for severe malaria.
URI:
http://hdl.handle.net/1807/31743
Files

Download thesis (PDF)
Permanent link

http://hdl.handle.net/1807/31743
Show complete metadata
Show Statistics
This item is licensed under a Creative Commons License Creative Commons

Advertisements

About garyskeete

ASHWORTH MEDICINE-Professional Medical Assisting, Doctor of Science,Legal Assistant Diploma BSc Criminal Justice
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s